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Practitioners, business users, developers, and academics love new data 

mining tools and methods.  And yet, successful data mining requires much 

more than powerful tools.  For all the strides that data mining tools have 

made during my 20-year career, using them well and interpreting their 

results still requires hard work and serious, critical thought.  Remember, “A 

fool with a tool is still a fool1.” 

 

That’s why I’ve been writing a series of articles on the nuts and bolts of 

data mining.  In this series, we’re reviewing what it takes to be successful 

with data mining, what the common pitfalls are, how to avoid or remedy 

problems, and how to interpret results. 

 

This article adresses a real workhorse for data mining and analysis, the 

histogram.  Histograms are bar charts that display the frequency 

distribution of a numeric quantity, like home value or income.  The most 

famous frequency distribution is the classic bell-shaped curve, also known 

as the “normal” distribution2.  Although the bell-shaped histogram is well-

known and well understood mathematically, it does not occur that often 

in actual real-world practice.  Among the histograms encountered most 

frequently in practice are the following: “money”, “count”, and “outlier”.  

We will look at each one of them in turn. 

 

The Money Histogram 

 

“Money” histograms arise in 

practice when financial data 

are plotted.  The data are 

usually transaction amounts - 

home values, salaries, prices 

paid for products, gift amounts 

donated to a charity – that 

are always positive.  Figure 1 

displays a sample of home 

values.  There is a left-hand 

“wall” at 0, and the data 

pushes out to the right to 

higher and higher positive 

values.    Notice that there are 

so few of the very high values 
Figure 1 - Histogram of Home Values 



that they don’t even show up on the chart. 

 

Since this is NOT a bell-shaped curve, there is no “center” of the curve.  As 

a result, for such money data, the standard statistics like the mean 

(average) and standard deviation are not “mean”-ingful.  The median 

value is somewhat more useful, since it represents the “middle” value. 

 

But neither of these measures, mean or median, tells the whole story of a 

money data element.    In fact, it is the logarithm3 of money data that is 

often distributed according to a bell-shaped curve. In Figure 2, I plot the 

histogram of the base-10 logarithms of the same home values from Figure 

1.  Using the values in Figure 2 for reference, you can see that the average 

of the log-value is 5.24.    

In “regular” (non-log) 

numbers, this indicates a 

home value of $172,000 

– that is, 105.24.   

 

You can also see from 

Figure 2 that the 

standard deviation in 

log terms is 0.284. And 

100.284 is 1.92, or almost 2.  

In plain English, then, 

one standard deviation 

above or below the log 

mean roughly doubles 

or halves the home 

value, respectively. For 

instance, on the logarithm chart, one standard deviation above the 

mean is a log-value of 5.524 (5.24+0.284), which translates to a home 

value of $334,000, or about double the average home value of $172,000. 

One standard deviation below is a log-value of 4.956 (5.24-0.284), which 

amounts to a home value of $90,000, roughly half of the average value of 

$172,000.    

 

One more comment: taking full unit steps in the logarithm world, say from 

5.0 to 6.0, amounts to taking order-of-magnitude4 steps in the regular 

world.  Let that sink in for a minute.  You don’t usually see order-of-

magnitude differences in people’s heights, or weights, or other physical 

attributes.  But it’s not that unusual for one person’s money market 

balance to be 10 or 100 or 1000 times greater than someone else’s.  This is 

a key point about financial data – and one you’ll want to make often 

when presenting it.  In terms of their financial data, some people can be 

Figure 2 - Histogram of Logarithm Home Values 



more than a little different from the average – they can be a lot different.  

And they need to be acknowledged and treated as a lot different.  By 

using the logarithm of money data elements, you gain clarity and insight.  

In my work, I use this technique constantly. 

 

 

The Count Histogram 

 

A “count” histogram, like the one shown in Figure 3, is also commonly 

encountered in real-world practice.  Here, the horizontal axis consists of 

integer values (0, 1, 2, 3, …), and the heights are the frequency counts.  A 

good real-world example of a “count” data element is the number of 

donations a constituent has made to a non-profit organization5.  In my 

experience, most constituents have made exactly one donation.  The 

number of constituents who have made 2, 3, 4, or more donations falls off 

quickly – sometimes even geometrically.   

 

To check if the fall-off is 

geometric, calculate 

the ratio of the heights 

from one bar to the 

next.  For instance, 

suppose that 10,000 

constituents made one 

donation, 5,000 made 

two donations, 2,500 

made three donations, 

and so on.  The ratio of 

two-time donors to one-

time donors is 

5,000/10,000 or ½, and 

the ratio of three-time 

donors to two-time donors is 2,500/5,000 which is also ½.  In this perfectly 

geometric situation, the number of one-time donors is equal to the sum of 

all the multiple donors – combined6!   

 

This is a key and compelling point for you to make in a presentation.  It 

underscores the importance of converting one-contribution donors into 

multi-contribution donors.  If half of your constituents only make one 

donation, you are constantly in the mode of acquiring a large number of 

new donors every year just to sustain the organization.  Growing the 

organization requires even more acquisition.  It’s an old adage because 

it’s true – the cost and effort to retain a donor (or customer) is much less 

Figure 3 - Histogram of the Number of Donations 



than that required to bring a new one in the door.  And the count 

histogram provides empirical support for that argument. 

 

 

 

The Outlier Histogram 

 

The “outlier” histogram is the last of the commonly-occurring histograms 

that you really need to know.  Visually, it’s incredibly uninteresting – that’s 

right, UN-interesting.  It just looks like one big bar – and nothing else – as in 

Figure 4.  But its looks are very deceiving.  This can be the signature of real 

trouble, if unnoticed and left untreated. 

 

What’s really going on 

here, and why is it so 

troublesome?  Consider 

again a non-profit 

organization. Suppose 

that one data element 

is the estimated wealth 

decile for the donors.  

Decile values should be 

in the range of 1 to 10, 

decile 1 being the least 

wealthy donors and 

decile 10 being the 

most wealthy.  Suppose 

that, through a glitch in 

creating an extract for analysis, one row of data is misaligned.  As a result, 

a value of 199 from another field is placed in the slot normally occupied 

by the wealth decile. 

 

When this data is plotted as a histogram in Figure 4, it appears as a very 

tall bar on the left-hand side of the graph.  The single, misaligned high 

value stretches the horizontal axis of the graph far to the right.  However, 

the single high value is insufficient to generate a visible bar on the 

histogram.  

 

Outliers, or values much different than the norm, are an important subject 

that deserves much deeper treatment than I can provide in this article.  

But, you might find a couple of recommendations and comments to be 

helpful. 

 

Figure 4 - Histogram of Wealth Deciles with an Outlier 



First, it is critical to 

detect and identify 

outliers.  There are 

reasonable numerical 

methods7 that can 

detect some outliers 

automatically.  They 

can be very useful if 

you have many 

columns of data to 

analyze.  If the number 

of columns in a data 

set is relatively small, I 

still find visual scanning 

of the histograms to be 

very quick and very 

effective.  Why is it so critical to detect the unusual, outlying values?  

Undetected and untreated, they skew most standard statistical analyses; 

they can lead to erroneous conclusions; and as a result, they can yield 

poor, costly decisions.  In the example, without outlier detection, further 

analysis would conclude that the wealth decile was unimportant for 

predicting future giving.  However, when the outlier is detected and 

repaired – resulting in the histogram shown in Figure 5 - more analysis 

reveals that the wealth decile is actually quite valuable for predicting 

future donations. 

 

Second, you need to understand why the outliers are present – and not 

just delete them out-of-hand.  Are they glitches from an extract process, 

like the example above?  Are they simple data-entry errors?  Or are they 

true, actual values that are very unique, rare, and valuable – like a $10 

million dollar donation to a charity where the average gift is $20?  This last 

category – the unusual, but true – is frequently quite interesting and often 

tricky to deal with.  But the key lesson is that outliers should not be ignored, 

and you can easily detect their presence with a histogram. 

 

 

Wrap-Up 

 

With this article, we continue a series on the nuts and bolts of data mining.  

Through the series, we review the fundamentals of the data mining trade: 

how to use tools and techniques efficiently and effectively.  Here we 

looked at a workhorse in the arsenal – the histogram.  It can tell us a lot 

about where problems lie (like outliers), where opportunities lie (as in 

retaining donors), and where the important differences lie (as in home 

Figure 5 - Wealth Deciles with Outlier Repaired 



values).  The histogram has been around for a long time - with good 

reason.  Use it well. 

  

 
Tim Graettinger, Ph.D., is the President of Discovery Corps, Inc. 

(http://www.discoverycorpsinc.com), a Pittsburgh-area company specializing in 

data mining, visualization, and predictive analytics.   

 

Your comments and questions about this article are welcome.  Please contact 

Tim at (724)-743-3642 or tgraettinger@discoverycorpsinc.com 

 

 
                                                 
1 I found this quote attributed to Grady Booch, but I suspect it dates to the invention of 

the first tool. 
2 The normal distribution is also sometimes known as the Gaussian distribution, named for 

Carl Friedrich Gauss. 
3 You can think of a logarithm as an exponent.  For instance, 102 =100, where 10 is called 

the base, and 2 is the logarithm of 100 using that base. 
4 “Order of magnitude” is another way of saying a factor of ten times. 
5 Or think about this example as the number of purchases a customer has made. 
6 Work it out – it’s true! 
7 See “Robust Regression and Outlier Detection” by P. Rousseuw and A. Leroy for a useful 

introduction. 
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