
Grab Bag 2: More Frequently-Asked Questions (and Answers) 

About Data Mining  
By Tim Graettinger 

 

For the past year, I have presented a data 

mining “nuts and bolts” session during a 

monthly webinar1.  My favorite part is the 

question-and-answer portion at the end.  In a 

previous article2, you learned my thoughts on: 

“what tools do you recommend?”, “how do 

you get buy-in from management?”, and    

“how do you transform non-numeric data?”  

Since my cup overfloweth with challenging, 

real-world questions from the webinar, it’s 

time for a sequel.  This time, we’ll focus on data and modeling issues.  Let’s get to the 

questions. 

 

 

Question 1: How much data do I need for data mining? 

 

This is by far the most common question people have 

about data mining (DM), and it’s worth asking why this 

question gets so much attention.  I think it’s almost a 

knee-jerk response when you first encounter data mining.  

You have data, and you want to know if you have 

enough to do anything useful with it from a DM 

perspective.  But despite the apparent simplicity of the 

question, it is unwise to try to answer without digging 

deeper and asking yet more questions.  My goal here is to 

provide you with the guiding principles you need 

understand so you can ask those next questions. You’ll 

even get a rule of thumb so you can produce your own 

estimate of the data you’ll need for DM. 

 

One guiding principle is based on relationship 

complexity, that is, the complexity of the relationship you want to model.  The more 

complex the relationship, the more data you need to model it accurately.   Duh, 

right?  But, ask yourself, “What’s the problem with this guiding principle?”  Did you 

say, “I don’t know how complex the relationship is?”  Good.  From a practical 

perspective, it’s useful to think of complexity in terms of the number of factors that 

might play a role in the relationship.  Let’s say that you want to predict customer 

churn.  Think about the probable factors that might impact churn, such as: tenure, 

age of the customer, number of complaints, and total lifetime value of purchases, 



among others.  Are there 4 probable factors or 14?  Don’t be concerned about fine 

precision here.  You just want to get in the right ballpark. 

 

With your factor estimate in hand, think next about what you would do to collect 

data from an experiment involving those factors3.  Have you thought about it?  At the 

very least, you want to test high and low values for each factor – independently, so 

you can see their effects without any confounding.  And, you want to run each 

experiment multiple times, to reduce the impact of noise or other spurious events.  

We can translate these considerations into a handy rule-of-thumb formula: 

 

 NR ≥ M×2
(F+1)

 

 

Where F is the number of factors, M is the multiple for each experiment (25 is a useful 

value here), 2 represents the need for at least high and low values, and NR is the 

result – the minimum number of records you will want/need for data mining. 

 

Let’s do a quick example.  Suppose you identified 9 factors for your application.  

Using the rule of thumb with a multiplier (M) of 25, we get 

 

 NR ≥ ×2
(9+1)

 ≈ 25,000 

 

which is fairly typical.  Notice that, according to our rule, the data requirements for 

DM rise rapidly with the number of factors – and even become astronomical for 50 or 

more factors.  People earnestly tell me that their application has 50, 100, or even 

more factors.  My response is that not all of those factors occur, or can be varied, 

independently.  And that’s what really matters for our rule to be applied.  If you think 

you have a LOT of factors, just use F=12 or 13 in the rule as a good place to start. 

 

A second guiding principle is balance, especially, balance in terms of the various 

outcomes.  In the customer churn application, there are two outcomes: defect and 

renew.  When building DM models, you need data associated with all of the 

outcomes of interest.  The more outcomes you have, the more data you need.   

 

But not only that, you need an adequate mix of each outcome.  Are you asking, 

“What makes an adequate mix?”  I hope so.  To make our discussion concrete, let’s 

work with the two outcomes for customer churn: defect and renew.  Suppose you 

have 100,000 customer records, but just 1% of them are defections.  In other words, 

only 1000 defections are included in the data set.   The number of records associated 

with the least-frequent outcome becomes the limiting constraint.  1000 records 

sounds like a small amount (compared to 100,000), doesn’t it?  In our rule-of-thumb 

formula above, NR really refers to the number of records associated with the least-

frequent outcome.  Think about why4. 

 

A third guiding principle is model complexity.  The more complex the model you 

choose to build (in terms of parameters/coefficients), the more data you need.  



Again, duh - but there is more to this principle than might be apparent on the 

surface, and we discuss the details in the context of the next question, posed below 

… 

 

 

Question 2: My model performs well, even great, on my training data.  However, the 

performance seems almost random when I test it on new data.  Arrghhh! Help!!! 

 

What you’re seeing is a classic symptom of 

“overfitting”, or “memorizing”, the training 

data.  I’ve seen overfitting most often in my 

own work when building models around rare 

events – like engine failure for a predictive 

maintenance application or major gift-giving 

(say, gifts of $10,000 and up) for non-profit 

fund raising. 

 

When the outcome of interest is rare (like 1 in 

100, 1 in 1000, or even less), there is a 

tendency to build models that are very 

complex - too complex given the available data.  Complex models have lots of free 

parameters, or handles, which can be adjusted to predict, or “fit”, the training data.   

The problem is that the model conforms to the unique features of the training data so 

well that it doesn’t work anywhere else.  It’s like custom-tailoring a suit to your unique 

body.  It fits you perfectly, but it doesn’t fit anyone else.  In the world of model-

building, that’s no good.  We want to build models that are robust, that generalize 

well to new data. 

 

What can you do?   

- First, make sure you create separate training, testing, and validation datasets.  

That way, you can actually detect a problem when it exists. 

 

- Second, calculate the fitting ratio for your model-data    combination.  For your 

model, count or estimate the number of parameters/coefficients.  For 

example, a logistic regression with 10 input elements has 11 coefficients5.  

Alternatively, a backpropagation neural network with 10 input elements and 5 

hidden-layer nodes has 61 coefficients6.  Then, for your data, count the number 

of records from the minority class (the “rare” event, e.g., the number of engine 

failures or the number of major gifts).  You can calculate the fitting ratio as:

  

 

      FR=NMC/NP 

 

where NMC is the number of minority class records, NP is the number of model 

parameters, and FR is the resulting fitting ratio.  Generally speaking, to produce 



really robust models – models that work well on new data, you want to work 

with fitting ratios greater than 100, or ideally greater than 1000. 

 

- Third, compare the performance of your model on the training data versus the 

test data.  If the model performs similarly on both samples (say, within +/-5%), 

you are probably in good shape.  If you do witness a disparity greater than 5%, 

you are probably overfitting the data with the model.  You need to make some 

changes.  What kind of changes, you ask?  The changes must increase the 

fitting ratio, which can be accomplished in two ways: 

- Decreasing the number of model parameters, NP 

- Increasing the number of minority class records, NMC 

 

The first option forces you to simplify your model.  For instance, you might 

eliminate input elements in a logistic regression, or you might eliminate hidden 

elements in a neural network.  I usually start by eliminating marginal input 

elements, then rebuild and retest the model.  Keep in mind that, by simplifying 

your model, performance on the training data will go down – compared to 

your initial run.  Why?  Your initial run was a mirage since you overfit the data.  

Now, because the model has fewer parameters (and less “flexibility”) to 

fit/overfit the training data, it is forced to generalize more.  This is the goal.  

You’ll see the positive effect as improved performance on the test data – 

which is what really matters. 

 

The latter option, increasing the number of rare event records, may require 

much more time and effort – but the payoff could be great.  To increase the 

number of rare event records, you might: 

- Go to the IT staff and ask for more major gift-givers from a previous 

campaign that had the same appeal. 

- Look for, or create, an alternative outcome that occurs more frequently.  

For example, engine failures may be very rare in a regular maintenance 

program.  But instances of degraded oil viscosity may be much more 

common and can act as a reasonable surrogate outcome that is a 

precursor to failure. 

 

 

Question 3:  Are new data mining/predictive 

analytics/modeling algorithms needed to 

produce better results? 

 

No. 

 

Oh, you’d like me to support my opinion?!?  

Okay.  When I was in grad school, I learned a 

lot about various predictive modeling 

algorithms –programming most of them from 



scratch to further my understanding.  Upon leaving grad school, I went to work for an 

early neural network software company, and thought, “This is the greatest modeling 

technique there is!” 

 

For our company, I consulted with a wide variety of clients who were using the 

software for all sorts of applications.  Often, the client’s in-house staff had been 

working on these applications for some time – using modeling techniques less 

complex than neural networks.  What we found time and again was that neural 

networks, at best, provided a small incremental improvement in performance over 

the less complex methods when using the same data elements. 

 

What did produce substantial improvements in performance? 

- Improved data representation 

- Additional, non-redundant data elements 

 

The former includes transforming elements by means of ratios, products, and 

logarithms.  The latter includes, for example, adding customer service records to 

transaction data for insurance policy holders. 

 

To sum up: more data elements, from more problem dimensions, better-represented, 

will trump the latest, greatest modeling technique.  Every time.  At least, that’s been 

my experience.  See these references for others’ experience7. 

 

 

That’s All the Space We Have… 

 

In this article, we looked at several challenging, frequently-asked questions: 

 

 How much data do I need for data mining? 

 How do I build robust models that perform well on test data and in the “real 

world”? 

 Are new data mining/predictive analytics/modeling algorithms needed to 

produce better results? 

 

I hope you found my responses helpful to you.  In future installments, we will look at 

more questions from practitioners and business users alike.  If you have a particular 

concern or question of your own, please feel free to get in touch – my contact 

information is below. 

 

 
Tim Graettinger, Ph.D., is the President of Discovery Corps, Inc. (http://www.discoverycorpsinc.com), a 

Pittsburgh-area company specializing in data mining, visualization, and predictive analytics.   

 

Your comments and questions about this article are welcome.  Please contact Tim at (724)-743-3642 or 

tgraettinger@discoverycorpsinc.com 
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1 The webinar is Data Mining: Failure to Launch – and it’s free.  Sorry for the shameless self-promotion. 

2 See “Grab Bag: Frequently Asked Data Mining Q & A” at http://www.discoverycorpsinc.com/grab-

bag-frequently-asked-data/ 

3 The concept is the same whether the data is already sitting in a data warehouse, or whether you 

have to collect it from scratch. 

4 If it’s not clear yet, read on.  And if it’s still not clear after that, send me an email. 

5 Remember to count the constant term in the logistic model as an input element. 

6 The number of coefficients in a backpropagation neural network is (N+1)×H  +  H + 1, where N is the 

number of input elements and H is the number of hidden-layer nodes. 

7 Here are a couple of high-profile instances where more, different data beat fancy modeling:  First, 

related to the Netflix Prize, see http://www.hackingnetflix.com/2008/04/stanford-data-m.html.  

Second, related to predicting Google’s earnings, see 

http://anand.typepad.com/datawocky/2008/04/more-data-beats.html.  By the way, I’m not against 

sophisticated modeling at all, but my experience tells me to work with the data much more than the 

modeling algorithms. 

http://www.the-modeling-agency.com/webinar/
http://www.discoverycorpsinc.com/grab-bag-frequently-asked-data/
http://www.discoverycorpsinc.com/grab-bag-frequently-asked-data/
http://www.hackingnetflix.com/2008/04/stanford-data-m.html
http://anand.typepad.com/datawocky/2008/04/more-data-beats.html

